
Bertil Schmidt
Profile
SIT Appointments
- Adjunct Professor– Present
Education
- PhD (Computer Science)Loughborough University , United Kingdom
- Dipl.-Informatiker (M.Sc.)Universitiy of Kiel , Germany
Achievements
- Best Paper Award IEEE HiPC 2020
- Best Paper Finalist SC'20
- Best Paper Award, IEEE ASAP 2015
- CUDA Teaching Center Award–
- CUDA Research Center (CRC) Award–
- Best Paper Award, IEEE ASAP 2009
- NVIDIA Professor Partnership Award–
Professional Memberships
- Associate Editor, Frontiers in High Performance Computing– Present
- Associate Editor, Journal of Parallel and Distributed Computing (JPDC)– Present
- Editorial Board Member, Journal on Computational Science (Elsevier)– Present
- IEEE Senior Member– Present
Research
Research Interests
-
GPU Computing
-
High Performance Computing
-
Bioinformatics
-
Algorithm Acceleration
-
Concurrent Data Structures
-
Applied Machine Learning
-
Computational Science
Publication
Journal Papers
K Xu, J Zhang, X Duan, X Wan, N Huang, B Schmidt, W Liu, G Yang: Redesigning and Optimizing UCSF DOCK3.7 on Sunway TaihuLight, IEEE Transactions on Parallel and Distributed Systems 33 (12), 2022, 4458-4471
Kallenborn, F., Cascitti, J., Schmidt, B. (2022). CARE 2.0: reducing false-positive sequencing error corrections using machine learning. BMC Bioinformatics, 23(1), 1-17.
Krüger, M., Wilson, J., Wietzoreck, M., Bandowe, B. A. M., Lammel, G., Schmidt, B., Poeschl, U., Berkemeier, T. (2022). Convolutional neural network prediction of molecular properties for aerosol chemistry and health effects. Natural Sciences, e20220016.
Bob, K., Teschner, D., Kemmer, T., Gomez-Zepeda, D., Tenzer, S., Schmidt, B., & Hildebrandt, A. (2022). Locality-sensitive hashing enables efficient and scalable signal classification in high-throughput mass spectrometry raw data. BMC Bioinformatics, 23(1), 1-16.
Meng, J., Zhuang, C., Chen, P., Wahib, M., Schmidt, B., Wang, X., Liu, W., Feng, S. (2022). Automatic Generation of High-Performance Convolution Kernels on ARM CPUs for Deep Learning. IEEE Transactions on Parallel and Distributed Systems, 33(11), 2885-2899.
Jünger, D., Kobus, R., Müller, A., Hundt, C., Xu, K., Liu, W., & Schmidt, B. (2022). General-purpose GPU hashing data structures and their application in accelerated genomics. Journal of Parallel and Distributed Computing, 163, 256-268.
Niebler, S., Miltenberger, A., Schmidt, B., & Spichtinger, P. (2022). Automated detection and classification of synoptic-scale fronts from atmospheric data grids. Weather and Climate Dynamics, 3(1), 113-137.
Zhang, H., Chang, Q., Yin, Z., Xu, X., Wei, Y., Schmidt, B., & Liu, W. (2022). RabbitV: fast detection of viruses and microorganisms in sequencing data on multi-core architectures. Bioinformatics, 38(10), 2932-2933.
Cascitti, J., Niebler, S., Müller, A., & Schmidt, B. (2022). RNACache: A scalable approach to rapid transcriptomic read mapping using locality sensitive hashing. Journal of Computational Science, 60, 101572.
Xu, K., Duan, X., Müller, A., Kobus, R., Schmidt, B., & Liu, W. (2022). FMapper: Scalable read mapper based on succinct hash index on SunWay TaihuLight. Journal of Parallel and Distributed Computing, 161, 72-82.
Gao, P., Duan, X., Schmidt, B., Zhang, W., Gan, L., Fu, H., Liu, W.& Yang, G. (2022). Optimization of reactive force field simulation: Refactor, parallelization, and vectorization for interactions. IEEE Transactions on Parallel and Distributed Systems, 33(2), 359-373.
F. Kallenborn, A. Hildebrandt, B. Schmidt: CARE: context-aware sequencing read error correction. Bioinformatics 37(7): 889-895 (2021)
B Schmidt, A Hildebrandt: Deep learning in next-generation sequencing. Drug Discovery Today 26 (1), 173-180
Zekun Yin, Hao Zhang, Meiyang Liu, Wen Zhang, Honglei Song, Haidong Lan, Yanjie Wei, Beifang Niu, Bertil Schmidt, Weiguo Liu: RabbitQC: high-speed scalable quality control for sequencing data. Bioinformatics 37(4): 573-574 (2021)
Zekun Yin, Xiaoming Xu, Jinxiao Zhang, Yanjie Wei, Bertil Schmidt, Weiguo Liu:
RabbitMash: accelerating hash-based genome analysis on modern multi-core architectures. Bioinformatics 37(6): 873-875 (2021Robin Kobus, José Manuel Abuín, André Müller, Sören Lukas Hellmann, Juan Carlos Pichel, Tomás F. Pena, Andreas Hildebrandt, Thomas Hankeln, Bertil Schmidt:
A big data approach to metagenomics for all-food-sequencing. BMC Bioinformatics. 21(1): 102 (2020)Winther, H. B., Gutberlet, M., Hundt, C., Kaireit, T. F., Alsady, T. M., Schmidt, B., Vogel‐Claussen, J. (2020). Deep semantic lung segmentation for tracking potential pulmonary perfusion biomarkers in chronic obstructive pulmonary disease (COPD): The multi‐ethnic study of atherosclerosis COPD study. Journal of Magnetic Resonance Imaging, 51(2), 571-579.
P Gao, X Duan, T Zhang, M Zhang, B Schmidt, X Zhang, H Sun, W Zhang, W. Liu: Millimeter-scale and billion-atom reactive force field simulation on Sunway Taihulight. IEEE Transactions on Parallel and Distributed Systems 31 (12), 2954-2967, 2020
JM Abuín, N Lopes, L Ferreira, TF Pena, B Schmidt: Big data in metagenomics: Apache spark vs MPI. Plos ONE 15 (10), e023974, 2020
Jiang, P., Luo, J., Wang, Y., Deng, P., Schmidt, B., Tang, X., Wong, L. & Zhao, L. (2019). kmcEx: memory-frugal and retrieval-efficient encoding of counted k-mers. Bioinformatics, 35(23), 4871-4878.
Lan, H., Meng, J., Hundt, C., Schmidt, B., Deng, M., Wang, X., Liu, W. & Feng, S. (2019). FeatherCNN: Fast inference computation with TensorGEMM on ARM architectures. IEEE Transactions on Parallel and Distributed Systems, 31(3), 580-594.
Conferences
Müller, A., Schmidt, B., Membarth, R., Leißa, R., & Hack, S. (2022). AnySeq/GPU: A Novel Approach for Faster Sequence Alignment on GPUs. ACM International Conference on Supercomputing (ICS 2022)
Henkys, V., Schmidt, B., & Berger, N. (2022). Online Event Selection for Mu3e using GPUs. ISPDC 2022
Weißenberger, A., & Schmidt, B. (2021, December). Accelerating JPEG Decompression on GPUs. IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC 2021) (pp. 121-130). IEEE.
Kobus, R., Müller, A., Jünger, D., Hundt, C., & Schmidt, B. (2021, August). MetaCache-GPU: ultra-fast metagenomic classification. In 50th ACM International Conference on Parallel Processing (ICPP 2021), ACM
Cascitti, J., Niebler, S., Müller, A., & Schmidt, B. (2021, June). RNACache: Fast Mapping of RNA-Seq Reads to Transcriptomes Using MinHashing. In International Conference on Computational Science (pp. 367-381). Springer, (ICCS 2021)
Jünger, D., Kobus, R., Müller, A., Hundt, C., Xu, K., Liu, W., & Schmidt, B. (2020, December). Warpcore: a library for fast hash tables on gpus. IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC 2020) (pp. 11-20). IEEE.
Duan, X., Gao, P., Zhang, M., Zhang, T., Meng, H., Li, Y., Schmidt, B., Liu, W. & Yang, G. (2020, November). Cell-list based molecular dynamics on many-core processors: a case study on sunway TaihuLight supercomputer. In SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (pp. 1-12). IEEE.
Schmidt, B., & Hundt, C. (2020, August). cuDTW++: Ultra-Fast Dynamic Time Warping on CUDA-Enabled GPUs. In European Conference on Parallel Processing (pp. 597-612). (Euro-Par 2020) Springer.
Hieronymus, M., Schmidt, B., & Böser, S. (2020, June). Reconstruction of Low Energy Neutrino Events with GPUs at IceCube. In International Conference on Computational Science (pp. 118-131). Springer, (ICCS 2020)
Müller, A., Schmidt, B., Hildebrandt, A., Membarth, R., Leißa, R., Kruse, M., & Hack, S. (2020, May). AnySeq: a high performance sequence alignment library based on partial evaluation. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS 2020) (pp. 1030-1040). IEEE.
Duan, X., Gao, P., Zhang, M., Zhang, T., Meng, H., Li, Y., Schmidt, B. & Liu, W. (2020, February). Neighbor-list-free molecular dynamics on sunway taihulight supercomputer. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP 2020).
Weißenberger, A., & Schmidt, B. (2019, August). Massively parallel ANS decoding on GPUs. In Proceedings of the 48th International Conference on Parallel Processing (pp. 1-10), ACM (ICPP 2019)
Yin, Z., Zhang, T., Müller, A., Liu, H., Wei, Y., Schmidt, B., & Liu, W. (2019, August). Efficient parallel sort on AVX-512-based multi-core and many-core architectures. In 2019 IEEE 21st international conference on high performance computing and communications; (HPCC) (pp. 168-176). IEEE.
Kobus, R., Jünger, D., Hundt, C., & Schmidt, B. (2019, August). Gossip: Efficient communication primitives for multi-gpu systems. In Proceedings of the 48th International Conference on Parallel Processing (pp. 1-10), ACM (ICPP 2019)
Büren, F., Jünger, D., Kobus, R., Hundt, C., & Schmidt, B. (2019, June). Suffix Array Construction on Multi-GPU Systems. In Proceedings of the 28th International Symposium on High-Performance Parallel and Distributed Computing (pp. 183-194) (ACM HPDC 2019)
Leißa, R., Boesche, K., Hack, S., Pérard-Gayot, A., Membarth, R., Slusallek, P., Müller, A. & Schmidt, B. (2018). AnyDSL: A partial evaluation framework for programming high-performance libraries. Proceedings of the ACM on Programming Languages, 2(OOPSLA 2018), 1-30.
Weißenberger, A., & Schmidt, B. (2018, August). Massively parallel Huffman decoding on GPUs. In Proceedings of the 47th International Conference on Parallel Processing (pp. 1-10), ACM (ICPP 2018)
Jünger, D., Hundt, C., & Schmidt, B. (2018, May). WarpDrive: Massively parallel hashing on multi-GPU nodes. In 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS 2018) (pp. 441-450). IEEE
Books
B. Schmidt, J. González-Domínguez, C. Hundt, M. Schlarb: Parallel Programming: Concepts and Practice, Morgan Kaufmann (Elsevier), 2018
B. Schmidt: Bioinformatics: High Performance Parallel Computer Architectures, Taylor & Francis/CRC Press, 2010